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1. Introduction 

The absorption of energy from an intense laser pulse propagating through a medium redistributes 
the molecules of the medium among the ground state and various excited states.  In general, 
these states differ significantly in their intrinsic ability to absorb and refract optical radiation.  
Thus, population redistribution typically results in a transient alteration in the bulk optical 
properties of the medium.  By monitoring the manner in which the medium’s optical properties 
evolve in time, one can infer not only the intrinsic optical properties of the various molecular 
states, but also the rates at which these states decay as the material relaxes back to its initial, 
unperturbed state.  The monitoring may be accomplished using a second laser pulse (the probe), 
generally much weaker than the first (the pump). 

Pump-probe techniques using a single fast (sub-nanosecond) pump pulse have long been used to 
measure the lifetimes and absorption cross-sections of the excited singlet states (1).  Swatton (2) 
pioneered use of a second picosecond pump pulse in an effort to obtain additional information 
about the triplet excited states.  These states are inaccessible directly from the ground state and 
for this reason are not significantly populated until some time after the arrival of the initial laser 
pulse.  By choosing the time delay between the two pump pulses to be on the order of the 
crossing time between the singlet and triplet manifolds, Swatton succeeded in measuring various 
photophysical parameters of both singlet and triplet excited states simultaneously.  This is 
extremely important, since the triplet states play a dominant role in determining the nonlinear 
optical absorptive properties of many of the most promising materials for eye and sensor 
protection applications.  More recently, McEwen and coworkers (3) employed a similar double 
pump – probe technique using a pair of nanosecond pump pulses and a continuous wave probe 
beam to measure the photophysical parameters of a series of porphyrin compounds. 

Nonlinear absorption in a wide variety of organic dyes is well described by a model consisting of 
five vibrational-rotational bands:  a singlet ground state, two singlet excited states, and two 
triplet excited states (4).  The arrangement of the various bands is shown in figure 1.  Parameter 
values are obtained by fitting a theoretical model to the experimental data, a procedure that may 
be carried out with particular ease if the model has an analytic solution.  Unfortunately, the rate 
equations comprising the five-band model admit no such analytic solution and must be solved 
numerically.  The simplified model presented here yields an analytical expression for the 
normalized transmittance of a CW probe in the presence of a strong pump pulse. 
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Figure 1. The five-band model.  The σ’s are absorption cross sections; the k’s are 
rate constants for the indicated transitions among the various bands. 

2. The Model 

The pump and probe propagate along the z-axis through a sample of thickness L.  Both are 
spatially Gaussian TEM0,0-mode beams; their spot radii are, respectively, pumpw  and probew . The 

probe is a continuous wave source while the pump is Gaussian in time.  We approximate the 
pump by the temporally clipped Gaussian with irradiance 
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where E is the total energy delivered by an unclipped pump pulse, ε  is fraction of that energy 
contained in the omitted tails, erf[x] is the Gaussian error function, τ is the HW(1/e)M temporal 
pulse width, and 1[1 ]t erfε τ ε−= − . 
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In order to obtain a set of rate equations that may be solved analytically, we replace the five-band 
model with a three-band effective model consisting of a ground state and two excited states of 
equal spin multiplicity.  The model is illustrated in figure 2.  We assume that the decay from the 
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Figure 2.  Three-band effective model. 

second excited state is so rapid that the population of this state is always negligible.  We further 
assume that the lifetime 1−k of the first excited state is sufficiently long ( 1<<τk ) that we may 
neglect the effects of the decay from this state during the interval εε ttt <<−  in which the pump 
irradiance is non-zero.  The fraction of X of the absorbing molecules in the first excited band 
then evolves according to 

 IX
ht

X G )1( −=
∂
∂

ν
σ

 (3a)  

in the presence of the pump ( εε ttt <<− ) and according to 

 kX
t
X

−=
∂
∂  (3b)  

during the subsequent refractory period ( εtt ≥ ).  Here, Gσ  is the ground state absorption cross-
section, which is related to the linear absorption coefficient 0α  and the number density 0N  of 
absorbing molecules by GN σα 00 = ; ν is the frequency of the pump radiation; h is Planck’s 
constant; and I the pump irradiance.  Both pump and probe irradiances attenuate according to 
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where exσ  is the absorption cross-section of the excited band.  

Introducing the saturation fluence GS hF σν /= , we assume that )0,0,( ==∞= zrtF , the total 
pump input  fluence on-axis, is sufficiently small that the more stringent of the following 
conditions is satisfied:  
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With these assumptions, the normalized transmittance of the probe beam is 
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It is straightforward to generalize (6) to the case of multiple pump pulses.  

3. Experimental Validation of the Model 

In order to validate the model, we conducted a series of pump-probe measurements on a 1-mm 
sample of 1.39-mM C60 in toluene.  C60 was chosen for this study because its triplet yield is close 
to unity; in such a material, the actual decay rate of the lowest-lying triplet band should show 
close agreement with the decay rate of the first excited band in the model.  The sample was 
pumped with 9-ns (FWHM) pulses from a Continuum Powerlite 7000 frequency-doubled, 
injection-seeded, single-longitudinal-mode Nd:YAG laser operating at a repetition rate of 10 Hz.  
The experiment employs a 514-nm, continuous-wave probe beam from a Lexel 95 Ar+ laser.  
Telescopes set the spot sizes of the pump and probe beams at the sample at 150 µm and 42.5 µm, 
respectively.  The two beams are aligned collinearly and have orthogonal polarizations.  After 
the two beams pass through the sample, the probe is separated from the pump using a polarizer.  
The probe beam is then focused onto a fast, sensitive Nu-Focus photodiode by a 75-mm lens.  
An Edmund Scientific notch filter for 514 nm blocks any residual scattered pump light from 
reaching the probe photodiode.  Figure 3 shows the data (gray dots) from two such 
measurements, one extending over temporal range of 70 ns and the other over 1.75 µs.  In each 
case, the pump pulse delivered 2.85 µJ.  The solid black line indicates the predictions of the 
model, computed from equation (6). 
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Figure 3. Normalized transmittance of a 7-mW CW probe by a 1-mm sample of 1.39-mM C60 in the presence 
of a 9-ns FWHM, 2.85-µJ pump pulse, focused to a spot of radius 150 µm.  The probe spot radius is 
42.5 µm.  

4. Analysis and Conclusions 

An independent measurement using a spectrophotometer yielded a value of 2.57 cm–1 for 0α , the 
linear absorption coefficient of the sample, corresponding to a ground state absorption cross-
section Gσ  of 3.1 × 10–18 cm2.  For the purposes of the calculation, we set 01.0=ε , i.e., we 
assume that the clipped pulse posited by the model contains 99% of the energy delivered by the 
pump pulse used in the experiment.  The theoretical curves shown in figure 3 were generated by 
choosing the parameters exσ  and k to give the best fit to the experimental data.  The resulting 
“best fit” value of 1.7 × 10–17 cm2 for the excited state absorption cross-section exσ  in the model 
agrees extremely well with value of 1.6 × 10–17 cm2 quoted in [4,5] for the absorption cross-
section of the first singlet excited state of C60.  Likewise, the “best fit” value of (340 ns)–1 for the 
excited state decay rate k shows excellent agreement with the rate of decay from the lowest-lying 
triplet state in C60 to the ground state, reported in [6] as (330 ± 25 ns)–1 in air-saturated benzene 
solution.  The experimental pump pulse energy corresponds to a fluence ratio F(∞ , 0, 0) / FS of 
0.13, so the conditions of (5) are satisfied. 

In summary, we have presented a simple, analytic model for the normalized transmittance of a 
weak CW probe in the presence of a (relatively) strong pump pulse in the low fluence regime.  
Because it neglects excited state decay for the duration of the pump pulse, the model would be 
expected to provide best results in the limit of short (picosecond) pump pulse widths.  
Nonetheless, the predictions of the model show excellent agreement with the results of an 
experimental pump-probe study of C60 employing 9-ns pump pulses. 
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